Home / FAQ

FAQ

hem resumit alguns problemes comuns

Producció

  • Q.

    Fas productes personalitzats?

    A.

    Sí. Oferim als clients solucions OEM/ODM. La quantitat mínima de comanda OEM és de 10,000 peces.

  • Q.

    Com empaqueteu els productes?

    A.

    Embalem segons les regulacions de les Nacions Unides i també podem proporcionar embalatges especials segons els requisits del client.

  • Q.

    Quin tipus de certificat teniu?

    A.

    Tenim ISO9001, CB, CE, UL, BIS, UN38.3, KC, PSE.

  • Q.

    Proporcioneu mostres gratuïtes?

    A.

    Oferim bateries amb una potència no superior a 10 WH com a mostres gratuïtes.

  • Q.

    Quina és la vostra capacitat de producció?

    A.

    120,000-150,000 peces per dia, cada producte té una capacitat de producció diferent, podeu discutir informació detallada segons el correu electrònic.

  • Q.

    Quant de temps es triga a produir?

    A.

    Uns 35 dies. L'hora concreta es pot coordinar per correu electrònic.

  • Q.

    Quant dura el temps de producció de la mostra?

    A.

    Dues setmanes (14 dies).

un altre

  • Q.

    Quins són els termes de pagament?

    A.

    En general, acceptem un pagament anticipat del 30% com a dipòsit i un 70% abans del lliurament com a pagament final. Es poden negociar altres mètodes.

  • Q.

    Quins són els terminis de lliurament?

    A.

    Oferim: FOB i CIF.

  • Q.

    Quin és el mètode de pagament?

    A.

    Acceptem el pagament mitjançant TT.

  • Q.

    A quins mercats has venut?

    A.

    Hem transportat mercaderies al nord d'Europa, Europa occidental, Amèrica del Nord, Orient Mitjà, Àsia, Àfrica i altres llocs.

Tecnologia

  • Q.

    Què és una bateria?

    A.

    Batteries are a kind of energy conversion and storage devices that convert chemical or physical energy into electrical energy through reactions. According to the different energy conversion of the battery, the battery can be divided into a chemical battery and a biological battery. A chemical battery or chemical power source is a device that converts chemical energy into electrical energy. It comprises two electrochemically active electrodes with different components, respectively, composed of positive and negative electrodes. A chemical substance that can provide media conduction is used as an electrolyte. When connected to an external carrier, it delivers electrical energy by converting its internal chemical energy. A physical battery is a device that converts physical energy into electrical energy.

  • Q.

    What are the differences between primary batteries and secondary batteries?

    A.

    La diferència principal és que el material actiu és diferent. El material actiu de la bateria secundària és reversible, mentre que el material actiu de la bateria primària no ho és. L'autodescàrrega de la bateria primària és molt més petita que la de la bateria secundària. Tot i així, la resistència interna és molt més gran que la de la bateria secundària, de manera que la capacitat de càrrega és menor. A més, la capacitat específica de massa i la capacitat específica de volum de la bateria primària són més importants que les de les bateries recarregables disponibles.

  • Q.

    What is the electrochemical principle of Ni-MH batteries?

    A.

    Ni-MH batteries use Ni oxide as the positive electrode, hydrogen storage metal as the negative electrode, and lye (mainly KOH) as the electrolyte. When the nickel-hydrogen battery is charged: Positive electrode reaction: Ni(OH)2 + OH- → NiOOH + H2O–e- Adverse electrode reaction: M+H2O +e-→ MH+ OH- When the Ni-MH battery is discharged: Positive electrode reaction: NiOOH + H2O + e- → Ni(OH)2 + OH- Negative electrode reaction: MH+ OH- →M+H2O +e-

  • Q.

    What is the electrochemical principle of lithium-ion batteries?

    A.

    The main component of the positive electrode of the lithium-ion battery is LiCoO2, and the negative electrode is mainly C. When charging, Positive electrode reaction: LiCoO2 → Li1-xCoO2 + xLi+ + xe- Negative reaction: C + xLi+ + xe- → CLix Total battery reaction: LiCoO2 + C → Li1-xCoO2 + CLix The reverse reaction of the above reaction occurs during discharge.

  • Q.

    What are the commonly used standards for batteries?

    A.

    Commonly used IEC standards for batteries: The standard for nickel-metal hydride batteries is IEC61951-2: 2003; the lithium-ion battery industry generally follows UL or national standards. Commonly used national standards for batteries: The standards for nickel-metal hydride batteries are GB/T15100_1994, GB/T18288_2000; the standards for lithium batteries are GB/T10077_1998, YD/T998_1999, and GB/T18287_2000. In addition, the commonly used standards for batteries also include the Japanese Industrial Standard JIS C on batteries. IEC, the International Electrical Commission (International Electrical Commission), is a worldwide standardization organization composed of electrical committees of various countries. Its purpose is to promote the standardization of the world's electrical and electronic fields. IEC standards are standards formulated by the International Electrotechnical Commission.

  • Q.

    What is the main structure of the Ni-MH battery?

    A.

    Els components principals de les bateries de níquel-hidrur metàl·lic són la làmina d'elèctrode positiu (òxid de níquel), la làmina d'elèctrode negatiu (aliatge d'emmagatzematge d'hidrogen), electròlit (principalment KOH), paper de diafragma, anell de segellat, tapa d'elèctrode positiu, caixa de bateria, etc.

  • Q.

    What are the main structural components of lithium-ion batteries?

    A.

    Els components principals de les bateries d'ions de liti són cobertes de bateries superior i inferior, full d'elèctrode positiu (el material actiu és òxid de cobalt de liti), separador (una membrana composta especial), un elèctrode negatiu (el material actiu és carboni), electròlit orgànic, caixa de la bateria. (dividit en dos tipus de carcassa d'acer i carcassa d'alumini) i així successivament.

  • Q.

    What is the internal resistance of the battery?

    A.

    Es refereix a la resistència experimentada pel corrent que flueix per la bateria quan la bateria està funcionant. Es compon de resistència interna òhmica i resistència interna de polarització. La resistència interna important de la bateria reduirà la tensió de treball de descàrrega de la bateria i escurçarà el temps de descàrrega. La resistència interna es veu afectada principalment pel material de la bateria, el procés de fabricació, l'estructura de la bateria i altres factors. És un paràmetre important per mesurar el rendiment de la bateria. Nota: En general, la resistència interna en estat de càrrega és l'estàndard. Per calcular la resistència interna de la bateria, hauria d'utilitzar un mesurador de resistència interna especial en lloc d'un multímetre en el rang d'ohms.

  • Q.

    What is the nominal voltage?

    A.

    La tensió nominal de la bateria es refereix a la tensió mostrada durant el funcionament normal. La tensió nominal de la bateria secundària de níquel-cadmi níquel-hidrogen és de 1.2 V; la tensió nominal de la bateria secundària de liti és de 3.6 V.

  • Q.

    What is open circuit voltage?

    A.

    La tensió de circuit obert es refereix a la diferència de potencial entre els elèctrodes positius i negatius de la bateria quan la bateria no funciona, és a dir, quan no hi ha corrent que flueix pel circuit. La tensió de treball, també coneguda com a tensió terminal, fa referència a la diferència de potencial entre els pols positius i negatius de la bateria quan la bateria funciona, és a dir, quan hi ha sobreintensitat al circuit.

  • Q.

    Quina és la capacitat de la bateria?

    A.

    La capacitat de la bateria es divideix en la potència nominal i la capacitat real. La capacitat nominal de la bateria fa referència a l'estipulació o garantia que la bateria hauria de descarregar la quantitat mínima d'electricitat en determinades condicions de descàrrega durant el disseny i la fabricació de la tempesta. La norma IEC estableix que les bateries de níquel-cadmi i níquel-hidrur metàl·lic es carreguen a 0.1 °C durant 16 hores i es descarreguen entre 0.2 °C i 1.0 V a una temperatura de 20 °C ± 5 °C. La capacitat nominal de la bateria s'expressa com a C5. Les bateries d'ió de liti s'estipulan per carregar-se durant 3 hores a temperatura mitjana, el corrent constant (1C)-tensió constant (4.2V) controla les condicions exigents i després es descarreguen entre 0.2C i 2.75V quan l'electricitat descarregada té capacitat nominal. La capacitat real de la bateria es refereix a la potència real alliberada per la tempesta en determinades condicions de descàrrega, que es veu afectada principalment per la velocitat i la temperatura de descàrrega (en sentit estricte, la capacitat de la bateria hauria d'especificar les condicions de càrrega i descàrrega). La unitat de capacitat de la bateria és Ah, mAh (1Ah=1000mAh).

  • Q.

    What is the residual discharge capacity of the battery?

    A.

    Quan la bateria recarregable es descarrega amb un gran corrent (com ara 1C o superior), a causa de l'"efecte coll d'ampolla" existent en la taxa de difusió interna de la sobreintensitat de corrent, la bateria ha assolit la tensió terminal quan la capacitat no està completament descarregada. , i després utilitza un petit corrent com ara 0.2C es pot continuar eliminant, fins que 1.0 V/peça (bateria de níquel-cadmi i níquel-hidrogen) i 3.0 V/peça (bateria de liti), la capacitat alliberada s'anomena capacitat residual.

  • Q.

    What is a discharge platform?

    A.

    La plataforma de descàrrega de les bateries recarregables Ni-MH sol referir-se al rang de tensió en què la tensió de treball de la bateria és relativament estable quan es descarrega sota un sistema de descàrrega específic. El seu valor està relacionat amb el corrent de descàrrega. Com més gran sigui el corrent, menor serà el pes. La plataforma de descàrrega de les bateries d'ions de liti generalment ha de deixar de carregar quan la tensió és de 4.2 V, i el present és inferior a 0.01 C a una tensió constant, després deixa-la durant 10 minuts i es descarrega a 3.6 V amb qualsevol velocitat de descàrrega. actual. És un estàndard necessari per mesurar la qualitat de les bateries.

  • Q.

    What is the marking method for rechargeable batteries specified by IEC?

    A.

    According to the IEC standard, the mark of Ni-MH battery consists of 5 parts. 01) Battery type: HF and HR indicate nickel-metal hydride batteries 02) Battery size information: including the diameter and height of the round battery, the height, width, and thickness of the square battery, and the values are separated by a slash, unit: mm 03) Discharge characteristic symbol: L means that the suitable discharge current rate is within 0.5C M indicates that the suitable discharge current rate is within 0.5-3.5C H indicates that the suitable discharge current rate is within 3.5-7.0C X indicates that the battery can work at a high rate discharge current of 7C-15C. 04) High-temperature battery symbol: represented by T 05) Battery connection piece: CF represents no connection piece, HH represents the connection piece for battery pull-type series connection, and HB represents the connection piece for side-by-side series connection of battery belts. Per exemple, HF18/07/49 representa una bateria quadrada d'hidrur de níquel-metall amb una amplada de 18 mm, 7 mm i una alçada de 49 mm. KRMT33/62HH representa la bateria de níquel-cadmi; la taxa de descàrrega és entre 0.5C-3.5, bateria única sèrie d'alta temperatura (sense peça de connexió), diàmetre 33 mm, alçada 62 mm. According to the IEC61960 standard, the identification of the secondary lithium battery is as follows: 01) The battery logo composition: 3 letters, followed by five numbers (cylindrical) or 6 (square) numbers. 02) The first letter: indicates the harmful electrode material of the battery. I—represents lithium-ion with built-in battery; L—represents lithium metal electrode or lithium alloy electrode. 03) The second letter: indicates the cathode material of the battery. C—cobalt-based electrode; N—nickel-based electrode; M—manganese-based electrode; V—vanadium-based electrode. 04) The third letter: indicates the shape of the battery. R-represents cylindrical battery; L-represents square battery. 05) Numbers: Cylindrical battery: 5 numbers respectively indicate the diameter and height of the storm. The unit of diameter is a millimeter, and the size is a tenth of a millimeter. When any diameter or height is greater than or equal to 100mm, it should add a diagonal line between the two sizes. Square battery: 6 numbers indicate the thickness, width, and height of the storm in millimeters. When any of the three dimensions is greater than or equal to 100mm, it should add a slash between the dimensions; if any of the three dimensions is less than 1mm, the letter "t" is added in front of this dimension, and the unit of this dimension is one-tenth of a millimeter. Per exemple, ICR18650 representa una bateria secundària d'ió de liti cilíndrica; el material del càtode és de cobalt, el seu diàmetre és d'uns 18 mm i la seva alçada és d'uns 65 mm. ICR20/1050. ICP083448 representa una bateria secundària quadrada d'ió de liti; el material del càtode és cobalt, el seu gruix és d'uns 8 mm, l'amplada és d'uns 34 mm i l'alçada és d'uns 48 mm. ICP08/34/150 representa una bateria secundària quadrada d'ions de liti; el material del càtode és cobalt, el seu gruix és d'uns 8 mm, l'amplada és d'uns 34 mm i l'alçada és d'uns 150 mm.

  • Q.

    What are the packaging materials of the battery?

    A.

    01) Non-dry meson (paper) such as fiber paper, double-sided tape 02) PVC film, trademark tube 03) Connecting sheet: stainless steel sheet, pure nickel sheet, nickel-plated steel sheet 04) Lead-out piece: stainless steel piece (easy to solder) Pure nickel sheet (spot-welded firmly) 05) Plugs 06) Protection components such as temperature control switches, overcurrent protectors, current limiting resistors 07) Carton, paper box 08) Plastic shell

  • Q.

    What is the purpose of battery packaging, assembly, and design?

    A.

    01) Beautiful, brand 02) The battery voltage is limited. To obtain a higher voltage, it must connect multiple batteries in series. 03) Protect the battery, prevent short circuits, and prolong battery life 04) Size limitation 05) Easy to transport 06) Design of special functions, such as waterproof, unique appearance design, etc.

  • Q.

    What are the main aspects of the performance of the secondary battery in general?

    A.

    Inclou principalment tensió, resistència interna, capacitat, densitat d'energia, pressió interna, velocitat d'autodescàrrega, cicle de vida, rendiment de segellat, rendiment de seguretat, rendiment d'emmagatzematge, aspecte, etc. També hi ha sobrecàrrega, sobredescàrrega i resistència a la corrosió.

  • Q.

    What are the reliability test items of the battery?

    A.

    01) Cycle life 02) Different rate discharge characteristics 03) Discharge characteristics at different temperatures 04) Charging characteristics 05) Self-discharge characteristics 06) Storage characteristics 07) Over-discharge characteristics 08) Internal resistance characteristics at different temperatures 09) Temperature cycle test 10) Drop test 11) Vibration test 12) Capacity test 13) Internal resistance test 14) GMS test 15) High and low-temperature impact test 16) Mechanical shock test 17) High temperature and high humidity test

  • Q.

    Quins són els elements de la prova de seguretat de la bateria?

    A.

    01) Short circuit test 02) Overcharge and over-discharge test 03) Withstand voltage test 04) Impact test 05) Vibration test 06) Heating test 07) Fire test 09) Variable temperature cycle test 10) Trickle charge test 11) Free drop test 12) low air pressure test 13) Forced discharge test 15) Electric heating plate test 17) Thermal shock test 19) Acupuncture test 20) Squeeze test 21) Heavy object impact test

  • Q.

    What are the standard charging methods?

    A.

    Charging method of Ni-MH battery: 01) Constant current charging: the charging current is a specific value in the whole charging process; this method is the most common; 02) Constant voltage charging: During the charging process, both ends of the charging power supply maintain a constant value, and the current in the circuit gradually decreases as the battery voltage increases; 03) Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero. Lithium battery charging method: Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero.

  • Q.

    What is the standard charge and discharge of Ni-MH batteries?

    A.

    L'estàndard internacional IEC estableix que la càrrega i descàrrega estàndard de les bateries d'hidrur de níquel-metall és: primer descarregueu la bateria a 0.2C a 1.0V/peça, després carregueu-la a 0.1C durant 16 hores, deixeu-la durant 1 hora i poseu-la. a 0.2C a 1.0V/peça, és a dir, per carregar i descarregar la bateria estàndard.

  • Q.

    What is pulse charging? What is the impact on battery performance?

    A.

    La càrrega de pols generalment utilitza la càrrega i la descàrrega, configurant-se durant 5 segons i després alliberant-se durant 1 segon. Reduirà la major part de l'oxigen generat durant el procés de càrrega a electròlits sota el pols de descàrrega. No només limita la quantitat de vaporització interna d'electròlits, sinó que les bateries antigues que s'han polaritzat molt es recuperaran gradualment o s'aproximaran a la capacitat original després de 5-10 vegades de càrrega i descàrrega mitjançant aquest mètode de càrrega.

  • Q.

    What is trickle charging?

    A.

    La càrrega continua s'utilitza per compensar la pèrdua de capacitat causada per l'autodescàrrega de la bateria després que estigui completament carregada. En general, la càrrega de corrent de pols s'utilitza per aconseguir l'objectiu anterior.

  • Q.

    What is charging efficiency?

    A.

    L'eficiència de càrrega es refereix a una mesura del grau en què l'energia elèctrica consumida per la bateria durant el procés de càrrega es converteix en l'energia química que la bateria pot emmagatzemar. Es veu afectat principalment per la tecnologia de la bateria i la temperatura de l'entorn de treball de la tempesta; generalment, com més alta sigui la temperatura ambient, menor serà l'eficiència de càrrega.

  • Q.

    What is discharge efficiency?

    A.

    L'eficiència de descàrrega es refereix a la potència real descarregada a la tensió terminal en determinades condicions de descàrrega a la capacitat nominal. Es veu afectat principalment per la velocitat de descàrrega, la temperatura ambient, la resistència interna i altres factors. En general, com més gran sigui la velocitat de descàrrega, més alta serà la velocitat de descàrrega. Com menor sigui l'eficiència de descàrrega. Com més baixa sigui la temperatura, menor serà l'eficiència de descàrrega.

  • Q.

    What is the output power of the battery?

    A.

    The output power of a battery refers to the ability to output energy per unit time. It is calculated based on the discharge current I and the discharge voltage, P=U*I, the unit is watts. The lower the internal resistance of the battery, the higher the output power. The internal resistance of the battery should be less than the internal resistance of the electrical appliance. Otherwise, the battery itself consumes more power than the electrical appliance, which is uneconomical and may damage the battery.

  • Q.

    What is the self-discharge of the secondary battery? What is the self-discharge rate of different types of batteries?

    A.

    Self-discharge is also called charge retention capability, which refers to the retention capability of the battery's stored power under certain environmental conditions in an open circuit state. Generally speaking, self-discharge is mainly affected by manufacturing processes, materials, and storage conditions. Self-discharge is one of the main parameters to measure battery performance. Generally speaking, the lower the storage temperature of the battery, the lower the self-discharge rate, but it should also note that the temperature is too low or too high, which may damage the battery and become unusable. After the battery is fully charged and left open for some time, a certain degree of self-discharge is average. The IEC standard stipulates that after fully charged, Ni-MH batteries should be left open for 28 days at a temperature of 20℃±5℃ and humidity of (65±20)%, and the 0.2C discharge capacity will reach 60% of the initial total.

  • Q.

    What is a 24-hour self-discharge test?

    A.

    The self-discharge test of lithium battery is: Generally, 24-hour self-discharge is used to test its charge retention capacity quickly. The battery is discharged at 0.2C to 3.0V, constant current. Constant voltage is charged to 4.2V, cut-off current: 10mA, after 15 minutes of storage, discharge at 1C to 3.0 V test its discharge capacity C1, then set the battery with constant current and constant voltage 1C to 4.2V, cut-off current: 10mA, and measure 1C capacity C2 after being left for 24 hours. C2/C1*100% should be more significant than 99%.

  • Q.

    What is the difference between the internal resistance of the charged state and the internal resistance of the discharged state?

    A.

    The internal resistance in the charged state refers to the internal resistance when the battery is 100% fully charged; the internal resistance in the discharged state refers to the internal resistance after the battery is fully discharged. Generally speaking, the internal resistance in the discharged state is not stable and is too large. The internal resistance in the charged state is more minor, and the resistance value is relatively stable. During the battery's use, only the charged state's internal resistance is of practical significance. In the later period of the battery's help, due to the exhaustion of the electrolyte and the reduction of the activity of internal chemical substances, the battery's internal resistance will increase to varying degrees.

  • Q.

    What is static resistance? What is dynamic resistance?

    A.

    La resistència interna estàtica és la resistència interna de la bateria durant la descàrrega, i la resistència interna dinàmica és la resistència interna de la bateria durant la càrrega.

  • Q.

    Is the standard overcharge resistance test?

    A.

    The IEC stipulates that the standard overcharge test for nickel-metal hydride batteries is: Discharge the battery at 0.2C to 1.0V/piece, and charge it continuously at 0.1C for 48 hours. The battery should have no deformation or leakage. After overcharge, the discharge time from 0.2C to 1.0V should be more than 5 hours.

  • Q.

    What is the IEC standard cycle life test?

    A.

    IEC stipulates that the standard cycle life test of nickel-metal hydride batteries is: After the battery is placed at 0.2C to 1.0V/pc 01) Charge at 0.1C for 16 hours, then discharge at 0.2C for 2 hours and 30 minutes (one cycle) 02) Charge at 0.25C for 3 hours and 10 minutes, and discharge at 0.25C for 2 hours and 20 minutes (2-48 cycles) 03) Charge at 0.25C for 3 hours and 10 minutes, and release to 1.0V at 0.25C (49th cycle) 04) Charge at 0.1C for 16 hours, put it aside for 1 hour, discharge at 0.2C to 1.0V (50th cycle). For nickel-metal hydride batteries, after repeating 400 cycles of 1-4, the 0.2C discharge time should be more significant than 3 hours; for nickel-cadmium batteries, repeating a total of 500 cycles of 1-4, the 0.2C discharge time should be more critical than 3 hours.

  • Q.

    What is the internal pressure of the battery?

    A.

    Refers to the internal air pressure of the battery, which is caused by the gas generated during the charging and discharging of the sealed battery and is mainly affected by battery materials, manufacturing processes, and battery structure. The main reason for this is that the gas generated by the decomposition of moisture and organic solution inside the battery accumulates. Generally, the internal pressure of the battery is maintained at an average level. In the case of overcharge or over-discharge, the internal pressure of the battery may increase: For example, overcharge, positive electrode: 4OH--4e → 2H2O + O2↑; ① The generated oxygen reacts with the hydrogen precipitated on the negative electrode to produce water 2H2 + O2 → 2H2O ② If the speed of reaction ② is lower than that of reaction ①, the oxygen generated will not be consumed in time, which will cause the internal pressure of the battery to rise.

  • Q.

    What is the standard charge retention test?

    A.

    IEC stipulates that the standard charge retention test for nickel-metal hydride batteries is: After putting the battery at 0.2C to 1.0V, charge it at 0.1C for 16 hours, store it at 20℃±5℃ and humidity of 65%±20%, keep it for 28 days, then discharge it to 1.0V at 0.2C, and Ni-MH batteries should be more than 3 hours. The national standard stipulates that the standard charge retention test for lithium batteries is: (IEC has no relevant standards) the battery is placed at 0.2C to 3.0/piece, and then charged to 4.2V at a constant current and voltage of 1C, with a cut-off wind of 10mA and a temperature of 20 After storing for 28 days at ℃±5℃, discharge it to 2.75V at 0.2C and calculate the discharge capacity. Compared with the battery's nominal capacity, it should be no less than 85% of the initial total.

  • Q.

    What is a short circuit test?

    A.

    Utilitzeu un cable amb una resistència interna ≤100mΩ per connectar els pols positius i negatius d'una bateria completament carregada en una caixa a prova d'explosió per curtcircuitar els pols positiu i negatiu. La bateria no ha d'explotar ni incendiar-se.

  • Q.

    What are the high temperature and high humidity tests?

    A.

    The high temperature and humidity test of Ni-MH battery are: After the battery is fully charged, store it under constant temperature and humidity conditions for several days, and observe no leakage during storage. The high temperature and high humidity test of lithium battery is: (national standard) Charge the battery with 1C constant current and constant voltage to 4.2V, cut-off current of 10mA, and then put it in a continuous temperature and humidity box at (40±2)℃ and relative humidity of 90%-95% for 48h, then take out the battery in (20 Leave it at ±5)℃ for two h. Observe that the appearance of the battery should be standard. Then discharge to 2.75V at a constant current of 1C, and then perform 1C charging and 1C discharge cycles at (20±5)℃ until the discharge capacity Not less than 85% of the initial total, but the number of cycles is not more than three times.

  • Q.

    What is a temperature rise experiment?

    A.

    After the battery is fully charged, put it into the oven and heat up from room temperature at a rate of 5°C/min.After the battery is fully charged, put it into the oven and heat up from room temperature at a rate of 5°C/min. When the oven temperature reaches 130°C, keep it for 30 minutes. The battery should not explode or catch fire. When the oven temperature reaches 130°C, keep it for 30 minutes. The battery should not explode or catch fire.

  • Q.

    What is a temperature cycling experiment?

    A.

    The temperature cycle experiment contains 27 cycles, and each process consists of the following steps: 01) The battery is changed from average temperature to 66±3℃, placed for 1 hour under the condition of 15±5%, 02) Switch to a temperature of 33±3°C and humidity of 90±5°C for 1 hour, 03) The condition is changed to -40±3℃ and placed for 1 hour 04) Put the battery at 25℃ for 0.5 hours These four steps complete a cycle. After 27 cycles of experiments, the battery should have no leakage, alkali climbing, rust, or other abnormal conditions.

  • Q.

    What is a drop test?

    A.

    Després que la bateria o el paquet de bateries estiguin completament carregats, es deixa caure des d'1 m d'alçada al sòl de formigó (o ciment) tres vegades per obtenir cops en direccions aleatòries.

  • Q.

    What is a vibration experiment?

    A.

    The vibration test method of Ni-MH battery is: After discharging the battery to 1.0V at 0.2C, charge it at 0.1C for 16 hours, and then vibrate under the following conditions after being left for 24 hours: Amplitude: 0.8mm Make the battery vibrate between 10HZ-55HZ, increasing or decreasing at a vibration rate of 1HZ every minute. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ. (Vibration time is 90min) The lithium battery vibration test method is: After the battery is discharged to 3.0V at 0.2C, it is charged to 4.2V with constant current and constant voltage at 1C, and the cut-off current is 10mA. After being left for 24 hours, it will vibrate under the following conditions: The vibration experiment is carried out with the vibration frequency from 10 Hz to 60 Hz to 10 Hz in 5 minutes, and the amplitude is 0.06 inches. The battery vibrates in three-axis directions, and each axis shakes for half an hour. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ.

  • Q.

    What is an impact test?

    A.

    Quan la bateria estigui completament carregada, col·loqueu una vareta dura horitzontalment i deixeu caure un objecte de 20 lliures des d'una certa alçada sobre la vareta dura. La bateria no ha d'explotar ni incendiar-se.

  • Q.

    What is a penetration experiment?

    A.

    Quan la bateria estigui completament carregada, passeu un clau d'un diàmetre específic pel centre de la tempesta i deixeu el passador a la bateria. La bateria no ha d'explotar ni incendiar-se.

  • Q.

    What is a fire experiment?

    A.

    Col·loqueu la bateria completament carregada en un dispositiu de calefacció amb una coberta protectora única per al foc, i cap residu passarà per la coberta protectora.

  • Q.

    What certifications have the company's products passed?

    A.

    Ha superat la certificació del sistema de qualitat ISO9001:2000 i la certificació del sistema de protecció ambiental ISO14001:2004; el producte ha obtingut la certificació CE de la UE i la certificació UL d'Amèrica del Nord, ha passat la prova de protecció del medi ambient SGS i ha obtingut la llicència de patent d'Ovonic; al mateix temps, PICC ha aprovat els productes de la companyia en el món de la subscripció d'abast.

  • Q.

    What is a Ready-To-Use battery?

    A.

    La bateria llesta per utilitzar és un nou tipus de bateria Ni-MH amb una alta taxa de retenció de càrrega llançada per l'empresa. És una bateria resistent a l'emmagatzematge amb el doble rendiment d'una bateria primària i secundària i pot substituir la bateria primària. És a dir, la bateria es pot reciclar i té una potència restant més gran després de l'emmagatzematge durant el mateix temps que les bateries secundàries Ni-MH ordinàries.

  • Q.

    Per què és Ready-To-Use (HFR) el producte ideal per substituir les bateries d'un sol ús?

    A.

    Compared with similar products, this product has the following remarkable features: 01) Smaller self-discharge; 02) Longer storage time; 03) Over-discharge resistance; 04) Long cycle life; 05) Especially when the battery voltage is lower than 1.0V, it has a good capacity recovery function; More importantly, this type of battery has a charge retention rate of up to 75% when stored in an environment of 25°C for one year, so this battery is the ideal product to replace disposable batteries.

  • Q.

    What are the precautions when using the battery?

    A.

    01) Please read the battery manual carefully before use; 02) The electrical and battery contacts should be clean, wiped clean with a damp cloth if necessary, and installed according to the polarity mark after drying; 03) Do not mix old and new batteries, and different types of batteries of the same model can not be combined so as not to reduce the efficiency of use; 04) The disposable battery cannot be regenerated by heating or charging; 05) Do not short-circuit the battery; 06) Do not disassemble and heat the battery or throw the battery into the water; 07) When electrical appliances are not in use for a long time, it should remove the battery, and it should turn the switch off after use; 08) Do not discard waste batteries randomly, and separate them from other garbage as much as possible to avoid polluting the environment; 09) When there is no adult supervision, do not allow children to replace the battery. Small batteries should be placed out of the reach of children; 10) it should store the battery in a cool, dry place without direct sunlight.

  • Q.

    What is the difference between various standard rechargeable batteries?

    A.

    At present, nickel-cadmium, nickel-metal hydride, and lithium-ion rechargeable batteries are widely used in various portable electrical equipment (such as notebook computers, cameras, and mobile phones). Each rechargeable battery has its unique chemical properties. The main difference between nickel-cadmium and nickel-metal hydride batteries is that the energy density of nickel-metal hydride batteries is relatively high. Compared with batteries of the same type, the capacity of Ni-MH batteries is twice that of Ni-Cd batteries. This means that the use of nickel-metal hydride batteries can significantly extend the working time of the equipment when no additional weight is added to the electrical equipment. Another advantage of nickel-metal hydride batteries is that they significantly reduce the "memory effect" problem in cadmium batteries to use nickel-metal hydride batteries more conveniently. Ni-MH batteries are more environmentally friendly than Ni-Cd batteries because there are no toxic heavy metal elements inside. Li-ion has also quickly become a common power source for portable devices. Li-ion can provide the same energy as Ni-MH batteries but can reduce weight by about 35%, suitable for electrical equipment such as cameras and laptops. It is crucial. Li-ion has no "memory effect," The advantages of no toxic substances are also essential factors that make it a common power source. It will significantly reduce the discharge efficiency of Ni-MH batteries at low temperatures. Generally, the charging efficiency will increase with the increase of temperature. However, when the temperature rises above 45°C, the performance of rechargeable battery materials at high temperatures will degrade, and it will significantly shorten the battery's cycle life.

  • Q.

    What is the rate of discharge of the battery? What is the hourly rate of release of the storm?

    A.

    La velocitat de descàrrega fa referència a la relació de velocitat entre el corrent de descàrrega (A) i la capacitat nominal (A•h) durant la combustió. La descàrrega de velocitat horària fa referència a les hores necessàries per descarregar la capacitat nominal a un corrent de sortida específic.

  • Q.

    Why is it necessary to keep the battery warm when shooting in winter?

    A.

    Since the battery in a digital camera has a low temperature, the active material activity is significantly reduced, which may not provide the camera's standard operating current, so outdoor shooting in areas with low temperature, especially. Pay attention to the warmth of the camera or battery.

  • Q.

    What is the operating temperature range of lithium-ion batteries?

    A.

    Càrrega -10—45 ℃ Descàrrega -30—55 ℃

  • Q.

    Can batteries of different capacities be combined?

    A.

    Si barregeu piles noves i velles amb diferents capacitats o les utilitzeu juntes, pot haver-hi fuites, tensió zero, etc. Això es deu a la diferència de potència durant el procés de càrrega, que fa que algunes bateries es sobrecarreguin durant la càrrega. Algunes bateries no estan completament carregades i tenen capacitat durant la descàrrega. La bateria alta no està completament descarregada i la bateria de baixa capacitat està sobre-descarregada. En un cercle tan viciós, la bateria està danyada i té fuites o té una tensió baixa (zero).

  • Q.

    What is an external short circuit, and what impact does it have on battery performance?

    A.

    Connectar els dos extrems exteriors de la bateria a qualsevol conductor provocarà un curtcircuit extern. El curs curt pot tenir conseqüències greus per a diferents tipus de bateries, com ara l'augment de la temperatura de l'electròlit, l'augment de la pressió de l'aire interna, etc. Si la pressió de l'aire supera la tensió de suport de la tapa de la bateria, la bateria es filtrarà. Aquesta situació danya greument la bateria. Si la vàlvula de seguretat falla, fins i tot pot provocar una explosió. Per tant, no curtcircuiteu la bateria externament.

  • Q.

    What are the main factors affecting battery life?

    A.

    01) Charging: When choosing a charger, it is best to use a charger with correct charging termination devices (such as anti-overcharge time devices, negative voltage difference (-V) cut-off charging, and anti-overheating induction devices) to avoid shortening the battery life due to overcharging. Generally speaking, slow charging can prolong the service life of the battery better than fast charging. 02) Discharge: a. The depth of discharge is the main factor affecting battery life. The higher the depth of release, the shorter the battery life. In other words, as long as the depth of discharge is reduced, it can significantly extend the battery's service life. Therefore, we should avoid over-discharging the battery to a very low voltage. b. When the battery is discharged at a high temperature, it will shorten its service life. c. If the designed electronic equipment cannot completely stop all current, if the equipment is left unused for a long time without taking out the battery, the residual current will sometimes cause the battery to be excessively consumed, causing the storm to over-discharge. d. When using batteries with different capacities, chemical structures, or different charge levels, as well as batteries of various old and new types, the batteries will discharge too much and even cause reverse polarity charging. 03) Storage: If the battery is stored at a high temperature for a long time, it will attenuate its electrode activity and shorten its service life.

  • Q.

    Can the battery be stored in the appliance after it is used up or if it is not used for a long time?

    A.

    Si no utilitzarà l'aparell elèctric durant un període prolongat, el millor és treure la bateria i posar-la en un lloc sec i a baixa temperatura. Si no, encara que l'aparell elèctric estigui apagat, el sistema encara farà que la bateria tingui una sortida de corrent baixa, la qual cosa reduirà la vida útil de la tempesta.

  • Q.

    What are the better conditions for battery storage? Do I need to charge the battery for long-term storage fully?

    A.

    According to the IEC standard, it should store the battery at a temperature of 20℃±5℃ and humidity of (65±20)%. Generally speaking, the higher the storage temperature of the storm, the lower the remaining rate of capacity, and vice versa, the best place to store the battery when the refrigerator temperature is 0℃-10℃, especially for primary batteries. Even if the secondary battery loses its capacity after storage, it can be recovered as long as it is recharged and discharged several times. In theory, there is always energy loss when the battery is stored. The inherent electrochemical structure of the battery determines that the battery capacity is inevitably lost, mainly due to self-discharge. Usually, the self-discharge size is related to the solubility of the positive electrode material in the electrolyte and its instability (accessible to self-decompose) after being heated. The self-discharge of rechargeable batteries is much higher than that of primary batteries. If you want to store the battery for a long time, it is best to put it in a dry and low-temperature environment and keep the remaining battery power at about 40%. Of course, it is best to take out the battery once a month to ensure the excellent storage condition of the storm, but not to completely drain the battery and damage the battery.

  • Q.

    What is a standard battery?

    A.

    A battery that is internationally prescribed as a standard for measuring potential (potential). It was invented by American electrical engineer E. Weston in 1892, so it is also called Weston battery. The positive electrode of the standard battery is the mercury sulfate electrode, the negative electrode is cadmium amalgam metal (containing 10% or 12.5% cadmi), i l'electròlit és una solució aquosa àcida i saturada de sulfat de cadmi, que és una solució aquosa de sulfat de cadmi saturat i sulfat de mercuri.

  • Q.

    What are the possible reasons for the zero voltage or low voltage of the single battery?

    A.

    01) External short circuit or overcharge or reverse charge of the battery (forced over-discharge); 02) The battery is continuously overcharged by high-rate and high-current, which causes the battery core to expand, and the positive and negative electrodes are directly contacted and short-circuited; 03) The battery is short-circuited or slightly short-circuited. For example, improper placement of the positive and negative poles causes the pole piece to contact the short circuit, positive electrode contact, etc.

  • Q.

    What are the possible reasons for the zero voltage or low voltage of the battery pack?

    A.

    01) Whether a single battery has zero voltage; 02) The plug is short-circuited or disconnected, and the connection to the plug is not good; 03) Desoldering and virtual welding of lead wire and battery; 04) The internal connection of the battery is incorrect, and the connection sheet and the battery are leaked, soldered, and unsoldered, etc.; 05) The electronic components inside the battery are incorrectly connected and damaged.

  • Q.

    What are the control methods to prevent battery overcharging?

    A.

    To prevent the battery from being overcharged, it is necessary to control the charging endpoint. When the battery is complete, there will be some unique information that it can use to judge whether the charging has reached the endpoint. Generally, there are the following six methods to prevent the battery from being overcharged: 01) Peak voltage control: Determine the end of charging by detecting the peak voltage of the battery; 02) dT/DT control: Determine the end of charging by detecting the peak temperature change rate of the battery; 03) △T control: When the battery is fully charged, the difference between the temperature and the ambient temperature will reach the maximum; 04) -△V control: When the battery is fully charged and reaches a peak voltage, the voltage will drop by a particular value; 05) Timing control: control the endpoint of charging by setting a specific charging time, generally set the time required to charge 130% of the nominal capacity to handle;

  • Q.

    What are the possible reasons why the battery or battery pack cannot be charged?

    A.

    01) Zero-voltage battery or zero-voltage battery in the battery pack; 02) The battery pack is disconnected, the internal electronic components and the protection circuit is abnormal; 03) The charging equipment is faulty, and there is no output current; 04) External factors cause the charging efficiency to be too low (such as extremely low or extremely high temperature).

No has trobat el que volies?Contacta'ns

tancar_blanc
tancar

Escriu la consulta aquí

respon en 6 hores, qualsevol pregunta és benvinguda!